Bulk Properties and Collective Dynamics

Nu Xu

Lawrence Berkeley National Laboratory

Many thanks to the conference organizers

Outline

1) Introduction

- Hydrodynamic approach
- Collectivity, local thermalization

2) Recent experimental data

- Transverse momentum distributions
- Partonic collectivity at RHIC

3) Summary and outlook

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter.
- 2) Gluons hold quarks together to from hadrons:

meson

baryon

 Gluons and quarks, or partons, typically exist in a color singlet state: confinement.

"In high-energy physics we have concentrated on experiments in which we distribute a higher and higher amount of energy into a region with smaller and smaller dimensions.

In order to study the question of 'vacuum', we must turn to a different direction; we should investigate some 'bulk' phenomena by distributing high energy over a relatively large volume."

Prof. T.D. Lee, Rev. Mod. Phys. 47, 267(1975).

Confinement Potential

The potential between quarks is a function of distance. It also depends on the temperature.

- 1) At low temperature, the potential increases linearly with the distance between quarks
- ⇒ quarks are confined;
- 2) At high temperature, the confinement potential is 'melted'
- ⇒ quarks are 'free'.

Note: It is not clear at all if there is a critical 'temperature' in high energy collisions

QCD on Predictions

Left: Large increase in energy density at $T_c \sim 170 \text{ MeV}$.

Not reach the non-interacting S.B. limit.

Right: Heavy quark potentials are melted at high temperature.

F. Karsch et al. Nucl. Phys. **B524**, 123(02). Z. Fodor et al, **JHEP** 0203:014(02). C.R. Allton et al, Nucl. Rev. **D66**, 074507(02). F. Karsch, Nucl. Phys. **A698**, 199c(02).

What Is the Problem?

- The confinement:

Quarks are the basic building blocks of matter.

No free quarks are seen, confined within hadron:

$$\Delta v_0 \sim 1 \text{ fm}^3$$
, $\rho_0 \sim 0.16 \text{ fm}^{-3}$, $\epsilon_0 \sim 0.15 \text{ GeV/fm}^3$

- Heavy ion collisions: Large, hot, and dense system

```
\Delta v \sim 1000 \text{ fm}^3 = 1000 v_0
\rho >> 3 \text{ fm}^{-3} \sim 20 \rho_0 \implies QGP(?)
\epsilon >> 3 \text{ GeV/fm}^3 \sim 20 \epsilon_0
```

Quarks and gluons are 'freely' moving in a large volume New form of *matter with partonic degrees of freedom*

- Connection with other fields

cosmology, origin of the universe, evolution of the universe quantum statistics with partons

Statistical QCD and dof

$$\varepsilon_{QED} = \frac{\pi^2}{30} \left[2 + \frac{7}{8} 2 \times 2 \right] T^4$$
photon spin electron spin

$$\varepsilon_{QCD} = \frac{\pi^2}{30} \left[2 \times 8 + \frac{7}{8} 2 \times 2 \times 3 \times 3 \right] T^4$$
gluon spin, color quark spin, color, flavor

Energy density reflects on what the matter is made of !

Hadron ⇔ Quark-gluon Gas

- 1) Facts:
 - hadron radius r_h~ 1 fm
 - T ≥ T_c ~ $1/r_h$ = 0.2 GeV
- 2) Hadron to parton transition
 T ≥ T_c GC partition function
 becomes divergent

I.Ya Pomeranchuk, Dokl.Akas.Nauk SSSR **78**, 889(1951) R. Hagedorn, Nuovo Cim.Suppl. **3**, 147(1965)

$$\varepsilon_{\pi} = \frac{\pi^2}{30} 3T^4 \propto T^4$$

$$\varepsilon_{QCD} \propto 16 T^4$$

A large energy density increase for transition from hadron to hot quark-gluon system!

High-energy Nuclear Collisions

- (1) Initial condition in high-energy nuclear collisions Color Glass Condensation
- (2) Cold-QCD-matter, small-x, high-parton density
 - parton structures in nucleon / nucleus

High-Energy Nuclear Collisions

Initial Condition

- initial scatterings
- baryon transfer
- E_T production
- parton dof

System Evolves

- parton interaction
- parton/hadron expansion

Bulk Freeze-out

- hadron dof
- interactions stop

Physical Goals at RHIC

Identify and study the properties of matter (EoS) with partonic degrees of freedom and determine the QCD phase diagram.

Penetrating probes

- direct photons, leptons
- "jets" and heavy flavor

Bulk probes

- spectra, v₁, v₂ ...
- partonic collectivity
- fluctuations

Hydrodynamic Flow

Collectivity

Local Thermalization

Pressure, Flow, ...

$\tau d\sigma = dU + pdV$

σ– entropy; p – pressure; U – energy; V – volume $τ = k_B T$, thermal energy per dof

In high-energy nuclear collisions, interaction among constituents and density distribution will lead to:

pressure gradient \Leftrightarrow collective flow

- ⇔ number of degrees of freedom (dof)
- ⇔ Equation of State (EOS)
- ⇔ No thermalization is needed pressure gradient only depends on the *density gradient and interactions*.
- ⇒ Space-time-momentum correlations!

Pressure, Flow, ...

Matter flows – all hadrons have the similar collective velocity

Random Thermal

Collective

$$\langle p_T \rangle \propto \langle p_T \rangle_{thermal} + mass*\langle v_T \rangle$$

$$T \propto T_{thermal} + mass*\langle v_T \rangle^2$$

$$\langle p_T \rangle_{thermal} \propto \sqrt{mass*T_{thermal}}$$

I.Bearden et al, Phys. Rev. Lett. 78, 2080(97).

Timescales of Expansion Dynamics

microscopic view

VS

macroscopic view

scattering rate v_{ab} ~

$$\int \frac{d^{3}p_{a}}{(2\pi)^{3}} \frac{d^{3}p_{b}}{(2\pi)^{3}} f_{a}(p_{a}) f_{b}(p_{b}) \sigma_{ab}(s) |\vec{\mathbf{v}}_{a} - \vec{\mathbf{v}}_{b}|$$

expansion rate $\ensuremath{\partial_{\mu}} u^{\mu}$ dilution rate $\ensuremath{\partial_{\tau}} s$

A macroscopic treatment requires that the scattering rate is larger than macroscopic rates

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (BNL), Upton, NY

STAR Detectors

TPC dE/dx PID:

pion/kaon: $p_T \sim 0.6 \text{ GeV/c}$; proton $p_T \sim 1.2 \text{ GeV/c}$

PHENIX Detectors

Two sets of forward-rapidity detectors for event characterization Beam-beam counters measure particle production in $3.0 < |\eta| < 3.9$. Luminosity monitor + vertex determination. Zero-degree calorimeters measure forward-going neutrons. Correlation gives centrality

MULTIPLICITY/VERTEX MUON ID STEEL BEAM-BEAM CENTRAL MAGNET COUNTER TIME OF FLIGHT SOUTH MUON MUON EXPANSION CHAMBER CHERENKOV MBERS

Two central electron/photon/hadron spectrometers:

- •Tracking, momentum measurement with drift chamber, pixel pad chambers
- •e ID with E/p ratio in EmCAL + good ring in RICH counter.

Two forward muon spectrometers

- •Tracking, momentum measurement with cathode strip chambers
- m ID with penetration depth / momentum match

The Two Smaller Detectors

BRAHMS

2 "conventional" spectrometers full phase space coverage Magnets, TPCs, TOF, RICH ~40 participants

PHOBOS

"Table-top" 2-arm spectrometer full phase space multiplicity measurement Magnet, Si μ-strips, Si multiplicity rings, TOF ~80 participants

Collision Geometry

Au + Au Collisions at 130 GeV

Peripheral Event

Au + Au Collisions at 130 GeV

Mid-Central Event

Au + Au Collisions at RHIC

Central Event

Collision Geometry

Number of participants: number of incoming nucleons in the overlap region Number of binary collisions: number of inelastic nucleon-nucleon collisions

Charged particle multiplicity ⇔ collision centrality

Reaction plane: x-z plane

Global: Charge Hadron Density

PHOBOS Collaboration

- 1) High number of N_{ch} indicates initial high density;
- 2) Mid-y, N_{ch} ∝ N_{part} ⇔ nuclear collisions are not incoherent;

Important for high density and thermalization.

PRL <u>85</u>, 3100 (00); <u>91</u>, 052303 (03); <u>88</u>, 22302 (02), <u>91</u>, 052303 (03)

Color Glass Condensate

Random Electric & Magnetic Weizsacker-Williams fields in the plane of the fast moving nucleus

A possible state for the initial conditions at RHIC

Suppression and Correlation

In central Au+Au collisions: hadrons are suppressed and back-to-back 'jets' are disappeared. Different from p+p and d+Au collisions.

Energy density at RHIC: $\underline{\mathbf{E}} > 5 \text{ GeV/fm}^3 \sim 30 \underline{\mathbf{E}_0}$

Parton energy loss: Bjorken 1982 ("Jet quenching") Gyulassy & Wang 1992

. . .

Transverse Flow Observables

$$\frac{d\vec{\sigma}}{d\Omega} = \frac{d^3\sigma}{dp_x dp_y dp_z} = \frac{dN}{p_t dp_t dy d\varphi} = \frac{1}{2\pi} \frac{dN}{p_t dp_t dy} \left[1 + \sum_{i=1}^{\infty} 2v_i \cos(i\varphi) \right]$$

$$p_t = \sqrt{p_x^2 + p_y^2}, \qquad m_t = \sqrt{p_t^2 + m^2}$$

$$v_i = \langle \cos(i\varphi) \rangle_{event}$$
 $\varphi = \tan^{-1} \left(\frac{p_y}{p_x} \right)$

- 1) Radial flow integrated over whole period of evolution
- 2) Directed flow (v_1) relatively early
- 3) Elliptic flow (v_2) relatively early
- Hadron mass dependent: characteristic of hydrodynamic behavior.

Directed Flow V_1

Initial spatial anisotropy Anisotropy in momentum space

Anisotropy Parameter v₂

coordinate-space-anisotropy

momentum-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

Higher Harmonics

- Higher harmonics are expected to be present. For smooth azimuthal distributions the higher harmonics will be small $v_n \sim v_2^{n/2}$
- v₄ a small, but sensitive observable for heavy ion collisions.

P. Kolb, PR C68, 031902(04)

v₄ - magnitude sensitive to ideal hydro behavior.

Borghini and Ollitrault, nucl-th/0506045

Protons From RHIC

K. Schweda, M. Kaneta ...

- In central collisions, m_t distributions become more concave ⇒ collective flow!
- 2) Within |y| < 0.5, dN/dy and $< p_T >$ are flat \Longrightarrow boost invariant!

Hadron Spectra from RHIC

p+p and Au+Au collisions at 200 GeV

Multi-strange hadron spectra are exponential in their shapes.

STAR white papers - Nucl. Phys. A757, 102(2005).

The Basic Ideas

- Assume thermally (constant T_{ch}) and chemically (constant n_i) equilibrated system at chemical freeze-out
- System composed of non-interacting hadrons and resonances
- Given T_{ch} and m 's (+ system size), n_i's can be calculated in a grand canonical ensemble

$$n_i = \frac{g}{2\pi^2} \int_0^\infty \frac{p^2 dp}{e^{(E_i(p) - \mu_i)/T} \pm 1}, \ E_i = \sqrt{p^2 + m_i^2}$$

- Obey conservation laws: Baryon Number, Strangeness, Isospin
- Short-lived particles and resonances need to be taken into account

Yields Ratio Results

- o data
- Thermal model fits

$$T_{ch} = 163 \pm 4 \text{ MeV}$$

$$\mu_{B} = 24 \pm 4 \text{ MeV}$$

- In central collisions, thermal model fit well with γ_S = 1. The system is thermalized at RHIC.
- Short-lived resonances show deviations. There is life after chemical freeze-out.

 RHIC white papers 2005, Nucl. Phys. <u>A757</u>, STAR: p102; PHENIX: p184.

QCD Phase Diagram

Center of Mass Beam Energy √s_{NN} (GeV)

Thermal Model Fits (Blast-Wave)

Source is assumed to be:

- Locally thermal equilibrated
- Boosted in radial direction

E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993)

$$E \frac{d^{3}N}{dp^{3}} \propto \int_{\sigma} e^{-(u^{\mu}p_{\mu})/T_{fo}} p d\sigma_{\mu} \Rightarrow$$

$$\frac{dN}{m_{T}dm_{T}} \propto \int_{0}^{R} r dr m_{T} K_{1} \left(\frac{m_{T} \cosh \rho}{T_{fo}}\right) I_{0} \left(\frac{p_{T} \sinh \rho}{T_{fo}}\right)$$

$$\rho = \tanh^{-1} \beta_{T} \qquad \beta_{T} = \beta_{S} \left(\frac{r}{R}\right)^{\alpha} \qquad \alpha = 0.5, 1, 2$$

Extract thermal temperature T_{fo} and velocity parameter $\langle \beta_T \rangle$

Blast Wave Fits: T_{fo} vs. $\langle \beta_T \rangle$

200GeV Au + Au collisions

- π, K, and p change smoothly from peripheral to central collisions.
- 2) At the most central collisions, $\langle \beta_T \rangle$ reaches 0.6c.
- 3) Multi-strange particles ϕ , Ω are found at higher T_{fo} and lower $\langle \beta_{\tau} \rangle$
- ⇒ light hadrons move with higher velocity compared to strange hadrons

STAR: NP<u>A715</u>, 458c(03); *PRL* <u>92</u>, 112301(04); <u>92</u>, 182301(04).

Compare with Model Results

Hydro model works well for π , K, p, but over-predicts flow for multistrange hadrons

Initial 'collective kick' introduced (P. Kolb and R. Rapp, PRC67)

Slope Parameter Systematics

v₂ at Low p_T Region

- Minimum bias data!
- At low p_T, model result fits mass hierarchy well Collective motion at RHIC
- More work needed to fix the details in the model calculations.

ϕ -mesons Flow: Partonic Flow

φ-mesons are very special:

- they do not re-interact in hadronic environment
- they show strong collective flow
- they are formed via coalescence with thermal s-quarks

STAR Preliminary: SQM06, S. Blyth Hwa and Yang, nucl-th/0602024; Chen et al., PRC73 (2006) 044903

Collectivity, Deconfinement at RHIC

- v₂ of light hadrons and multi-strange hadrons
- scaling by the number of quarks

At RHIC:

⇔ m_T - NQ scaling

⇔ De-confinement

PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04), 95, 122301(05) nucl-ex/0405022, QM05

S. Voloshin, NPA715, 379(03) Models: Greco et al, PR<u>C68</u>, 034904(03) Chen, Ko, nucl-th/0602025 Nonaka et al. <u>PLB583</u>, 73(04) X. Dong, et al., Phys. Lett. <u>B597</u>, 328(04).

Non-photonic Electron v₂

PHENIX: Minimum bias
Yifei Zhang

M. Kaneta *et al*, J.Phys. **G30**, S1217(04) STAR Ph.D student

HSD: E. Bratkovskaya et al., hep-ph/0409071; X. Dong, S. Esumi, et al., Phys. Lett. **B597**, 328(2004).

EoS Parameters at RHIC

In central Au+Au collisions at RHIC

- partonic freeze-out:

$$*T_{pfo} = 165 \pm 10 \text{ MeV}$$

 $v_{pfo} \ge 0.2 \text{ (c)}$

weak centrality dependence

- hadronic freeze-out:

$$*T_{fo} = 100 \pm 5 \text{ (MeV)}$$

 $v_{fo} = 0.6 \pm 0.05 \text{ (c)}$

strong centrality dependence

Systematic study are needed to understand the centrality dependence of the EoS parameters

* Thermalization assumed

Summary

Physics Today

L. McLerran, T. Ludlam,

Jet-quenching:

Hot and dense system created in Au+Au collisions

Flow:

Collective flow observed for all hadrons especially the multi-strange and charm hadrons. The partonic interactions are responsible to the early collectivity at RHIC

Next Step:

Test thermalization of light flavors by studying heavy flavor collectivity

In the Near Future

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter.
- 2) Gluons hold quarks together to from hadrons:

meson

baryon

 Gluons and quarks, or partons, typically exist in a color singlet state: confinement.

Hard QCD Probes

$$d\sigma_{AB \to hard}(b) = T_{AB}(b) \cdot d\sigma_{pp \to hard}$$
 $T_{AB}(b) \propto N_{bin}(b)$

Quark Masses

- Higgs mass: electro-weak symmetry breaking. (current quark mass)
- 2) QCD mass: Chiral symmetry breaking. (constituent quark mass)
- Strong interactions do not affect heavy-quark masses.
- Important tool for studying properties of the hot/dense medium at RHIC.

Charm Cross Section Results

mid-y data

STAR:

 e^{\pm} , μ^{\pm} , D, e-K

PHENIX:

e[±]

First set of measurements:

- Number of binary collision scaling ⇒ initial production
- pQCD models under-predict charm cross sections
- Systematic errors are large. Precision data are needed.

Heavy Flavor Energy Loss

M. Djordjevic, et. al. nucl-th/0507019

- Non-photonic electrons decayed from charm and beauty hadrons
- 2) At $p_T \ge 6$ GeV/c,

$$R_{AA}(n.e.) \sim R_{AA}(h^{\pm})$$

contradicts to naïve pQCD predictions

Surprising results -

- challenge our understanding of the energy loss mechanism
- force us to RE-think about the collision energy loss
- requires isolation of c-hadrons contributions from b-hadrons

Outlook

RHIC upgrades and new LHC programs:

(now-2012) (2008)

- high p_T c-hadron spectra
 - pQCD properties in hot/dense medium
- precise data on total cross section for c- and b-hadrons
- c-hadron correlation functions and flow
 - ⇒ heavy flavor collectivity and light flavor thermalization
- more surprises: ...
- New era for understanding the QCD medium properties at both RHIC and LHC is coming.

- 1) RHIC heavy-flavor program / LHC:
- Study *medium properties*
- pQCD in hot and dense medium
- 2) RHIC energy scan / GSI program:
- Search for *phase boundary*.
- Chiral symmetry restoration

The Nobel Prize in Physics 2006

http://www.lbl.gov/Publications/Nobel/

"for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation"

COBE: Discovery 'baby photo' of

the universe

RHIC: Life history of the universe